Towards a Checklist of AGI Implementation - Can a Critic Become a Solutionist?

Janne P. Hukkinen – inrobotico.com, Helsinki

Describing AGI Agent & Environment

Agency¹

- Spirit: Virtual control/operating system of any agent (cells, animals, humans, families, cities, ecosystems, corporations, nation states, ...)
- Agency: Cybernetic control plant in feedback relation to environment
- Sentience: Agent discovers itself in and its relationship to the world
- Consciousness: Agent aware of own attention, able to control it. Creates coherent interpretation. Maintains indexed memory for disambiguation, learning, and reasoning. Mediates knowledge within mind.
- Self: self-image, 1st person perspective. Content modulated when agent turns intentions to actions. Between discovery of own existence and deconstruction of the self-representations.
- **Emotions**: content & expressions are learned, on top of low level bodily valence²
- Mental models of self & world create subjective reality
- Generic Reward is enough hypothesis³ & Motivations⁴

Environment

 Dimension scales have alternatives. **Observations**: discrete – continuous **Actions**: discrete – continuous **Time**: discrete – continuous **Dynamics**: deterministic – stochastic – chaotic

Observability: full – partial **Agency** (others'): single – multiagency **Uncertainty**: certain – uncertain **Reality**: simulated – real-world

...3,5,4

Communication

- Signaling
- Signal Combinations
- Symbols are physical entities on sensory modality; labels for concepts
- Language as multi-level rule & symbol system: phonology, morphology, universal grammar

World Knowledge, Representation

- What do we know about world structure and dynamics?
- Motor control of body, movement, locomotion
- Mental models of environment & self²¹
- Causal Systems/Networks
- 3+D physical world (sensory modalities + time)
- Objects
- Affordances
- Social World (human culture), other agents
- Abstract Concepts
- Energy
- Survival
- Resolution⁴ of time, space, information channel width, world knowledge, decision making, etc.

Hardware

- Sensors, Actuators, Signaling
- Motor Control, multiscale time and space resolutions
- Embodied Learning: body constrains and modulates learning
- Implicit Computation by physical & mechanical properties of body

Cognitive Capabilities

- Perception
- Abstraction, Conceptualization, Objectification
- Learning
- Memory (sensory, motor, experiential, episodic, procedural)
- Mental simulation
- Reasoning, Planning
- Navigation
- Causality: interaction between mental models

Cognitive Architecture of Modules/Agents

- A set of modules/agents comprise complete AGI agent (society of mind¹,⁶)
- No sentience, self, consciousness, etc. for sub-modules/sub-agents
- Divide labor between modules/agents
- Orchestration
- Marrian computational levels
- purpose
- algorithm, 1 per module/agent
- implementation/hardware
- **Reward-is-enough** framework³

Why AGI?

Why Build?

- Complex system is best understood by modeling it. Building a system reprioritizes and explicates what we don't understand (mechanisms instead of narratives⁷)
- AGI agent needs to be run in the world for alignment testing with world dynamics (aesthetics), which is extrapolated from highest level purposes of civilization¹
- White hat security: Improve security and ethics by trying to break/missuse a working system
- Not building does not protect us from adversarial and unethical entities using AGI systems against us.

Why Checklist?

 Many AGI models exist, but have gaps. Can you find any right now? How would you build AGI?

Definition, Criteria

- Human-level or super-human behavior and adaptation with insufficient knowledge and resources⁸ in undefined environments and tasks
- native (system information content) vs. performance intelligence⁹
- Computational part of reaching goals adaptively⁹
- Hypothesis: generic objective of maximizing reward is enough for AGI³

Goals

- 1. Minimize & explicate unknowns.
- 2. Help design & evaluation (of functionality, ethics, progress).

AGI Design Thinking

AGI Design Thinking: Modular "Designed Organization"

- **Define application** requiring AGI (cognitive goal/task/problem)
- 2. **Empathize environment**, worldknowledge, and cognitive capabilities required (from human intuitive to explicit technical) by (1)
- 3. Create descriptive functional system's architecture (high-level intuitionpumped human-inspired design narrative aid)
- 4. Make an **inventory of algorithms** and hardware available
- 5. Divide labor & orchestrate computational modules
- 6. Operationalize cognitive architecture: specify software & hardware
- goal/task
- perception (world & self)
- data processing
- learning, cognitive scaffolding
- orchestration
- 7. Try to implement.
- 8. **Iterate**
- Key Problem: Orchestration: How can we know beforehand whether a particular architecture actually works?

AGI Design Thinking: Cybernetic "Constrained Organization"

- 1. **Identify purposes**¹/ rewards³/goals on the highest level
- 2. Empathize RICH environment for agent(s)³ to facilitate & constrain learning
- 3. Make an **inventory of algorithms** and hardware available. Evaluate with theoretical *Universal AI*⁵ [hutter_universal_2005]
- 4. **Decide: 1 or >=2 agents**^{1,3,5}
- 5. Divide labor & orchestrate Society of Mind for >=2 agents
- 6. Operationalize agent(s): specify software & hardware
- purpose/goal, generic reward
- environment (world & self)
- perception
- cybernetic agent
- reinforcement learning
- algorithms;
- 7. Try to implement.
- 8. **Iterate**
- Training in interaction with environment
- Reward-is-enough hypothesis: Rich environment and generic reward/goal is enough for AGI. When agent gravitates towards reward, sub-goals/skills are learned implicitly on the way.³
- Key Problem: How to partition & scaffold learning space? Scaffolding of learning, to monitor orchestration & transparency.

Intuition Pump

- Pros: Helps in designing architecture.
- Cons: Illusion of explanation. Only the tip of the ice berg of cognition and the world is visible.

Open Problems

- Perception, Learning, Architecture¹, Orchestration
- Values & priorities of civilization?¹

References

- (2) Feldman-Barrett, L. How Emotions Are Made: The Secret Life of the Brain; Pan Macmillan, 2017.
- (3) Silver, D.; Singh, S.; Precup, D.; Sutton, R. S. Reward Is Enough. Artificial Intelligence 2021, 299, 103535.

(4) Dörner, D.; Güss, C. D. PSI: A Computational Architecture of Cognition, Motivation, and Emotion. *Review of General Psychology* **2013**, *17* (3), 297–317.

(5) Hutter, M. Universal Artificial Intelligence, 2016.

(6) Minsky, M. Society of Mind; Simon; Schuster, 1988.

- (7) Rooij, I. van. Psychological Models and Their Distractors. *Nature Reviews Psychology* **2022**, *1* (3), 127–128.
- (8) Wang, P. On Defining Artificial Intelligence. *Journal of Artificial General Intelligence* **2019**, 10 (2), 1–37.
- (9) Legg, S. Machine Super Intelligence. PhD Thesis, Università della Svizzera italiana, 2008.